poLCA: AnRPackage for Polytomous Variable Latent Class Analysis
نویسندگان
چکیده
منابع مشابه
poLCA: An R Package for Polytomous Variable Latent Class Analysis
poLCA is a software package for the estimation of latent class and latent class regression models for polytomous outcome variables, implemented in the R statistical computing environment. Both models can be called using a single simple command line. The basic latent class model is a finite mixture model in which the component distributions are assumed to be multi-way cross-classification tables...
متن کاملpoLCA: Polytomous Variable Latent Class Analysis Version 1.2
poLCA is a software package for the estimation of latent class and latent class regression models for polytomous outcome variables, implemented in the R statistical computing environment. Both models can be called using a single simple command line. The basic latent class model is a finite mixture model in which the component distributions are assumed to be multi-way cross-classification tables...
متن کاملLatent Class Analysis Variable Selection.
We propose a method for selecting variables in latent class analysis, which is the most common model-based clustering method for discrete data. The method assesses a variable's usefulness for clustering by comparing two models, given the clustering variables already selected. In one model the variable contributes information about cluster allocation beyond that contained in the already selected...
متن کاملLocal Influence Analysis of Two-level Latent Variable Models with Continuous and Polytomous Data
A latent variable model is proposed to analyze two-level data with hierarchical structure and mixed continuous and polytomous data that are very common in behavioral, biomedical and social research. On the basis of an EM algorithm associated with the maximum likelihood estimation of the model, a method is developed for assessing local influence of minor perturbation for the proposed latent vari...
متن کاملBayesian variable selection for latent class models.
In this article, we develop a latent class model with class probabilities that depend on subject-specific covariates. One of our major goals is to identify important predictors of latent classes. We consider methodology that allows estimation of latent classes while allowing for variable selection uncertainty. We propose a Bayesian variable selection approach and implement a stochastic search G...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Statistical Software
سال: 2011
ISSN: 1548-7660
DOI: 10.18637/jss.v042.i10